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1. Introduction 
In mode-division multiplexing systems, transmission is 
impaired by coupling occurring among modes and can only be 
accomplished in the two opposite regimes of weak- and strong-
coupling, each requiring a different strategy at the receiver to 
recover the data [1]. A precise characterization of coupling is 
thus fundamental to design the system. This work proposes a 
method to assess coupling in terms of coupling length 𝐿 , 
which is the distance at which the average power 𝑝(𝑧) 
launched on a mode decorrelates, spreading into the others. 
This parameter, when compared with the fiber length 𝐿, 
indicates the coupling regime: weak if 𝐿 ≫ 𝐿, or strong if 
𝐿 ≪ 𝐿. Because of the complex behavior that power may 
assume when coupling occurs, we propose a definition of 
coupling length sensitive to possible power oscillations, i.e., 
𝐿 = ∫ 𝑝(𝑧)𝑑𝑧/𝑝(0), with  𝑝(𝑧) = 𝑝(𝑧) − 𝑝(∞). Hence, 𝐿  
takes shorter values for oscillations of higher amplitudes and 
frequencies. Since coupling is much stronger within groups of 
degenerate modes, we neglect inter-group coupling to simplify 
the analysis. In a degenerate group, the propagation is given by 
d𝒂/d𝑧 = −𝑗𝑹(𝜃)𝑲 𝑹 (𝜃)𝒂 [2], where 𝒂 are the amplitudes 
of the modes, 𝑲  is the coupling matrix when the perturbation 
is aligned to the reference frame of the fiber, 𝑹 is a proper 
rotation matrix, and 𝜃(𝑧) is the angle at which the perturbation 
is tilted with respect to the reference. Following the fixed-
modulus model [2], we choose 𝜃(𝑧) as a Wiener process, i.e., 
d𝜃/d𝑧 = −𝜎𝜂(𝑧) with 𝜂(𝑧)~𝒩(0,1) normal distributed. The 
perturbation’s strength and orientation dynamics are outlined 
respectively by two parameters: the coupling beat length, 𝐿 =
2𝜋/(max 𝜅 − min 𝜅 ), with 𝜅 ∈ eig{𝑲 }; and the fiber 
correlation length, 𝐿 = 1/(2𝜎 ). Short values of 𝐿  and 𝐿  
indicate strong and fast evolving perturbations, and conversely 
with long values the opposite is true. 

2. Results 
The model can be cast as a stochastic differential equation [3], 
where the state of the system 𝒙 includes both 𝒂 and 𝜃. In this 
context, the average power for the 𝑖-th mode is 𝑝 (𝑧) =
𝒄 𝒚(𝒙), where a set of auxiliary function 𝒚 are linearly 
combined according to 𝒄 . The Dynkin’s formula [4] provides 
a set of differential equations for 𝒚, d𝒚/d𝑧 = 𝑴𝒚; we can then 
write 𝑝 (𝑧) = ∑ 𝑤 exp 𝜆 𝑧 , where 𝜆  are the eigenvalues of 
𝑴 and 𝑤  are linear combinations of the eigenvectors of 𝑴, of 
𝒄 , and of the launching conditions. Then, the coupling length 
𝐿  for the 𝑖-th mode becomes 𝐿 = (∑ 𝑤 /𝜆 )/ ∑ 𝑤 , where 

the sum excludes 𝜆 = 0 to not consider the asymptotic value. 
The method is used to analyze coupling within groups of 
degenerate 𝐿𝑃 modes in step-index fibers when affected by 
stress-birefringence and core ellipticity. By inspecting the 
coupling matrices 𝑲 , four different cases are identified [2]: 1) 
𝐿𝑃  groups with birefringence or ellipticity; 2) 𝐿𝑃  𝑛 ≠ 0 
groups with birefringence, and 𝐿𝑃  𝑛 ≥ 3 groups with 
ellipticity; 3) 𝐿𝑃  modes with ellipticity; 4) 𝐿𝑃  modes with 
ellipticity. For each case, the coupling length of a mode when 
all the power is launched on that mode is evaluated at different 
values of 𝐿 /𝐿  and represented, normalized over 𝐿 , in Fig. 
1. Results show two asymptotic regions, 𝐿 ≪ 𝐿  and 𝐿 ≫
𝐿 , where 𝐿 ≈ 𝑞𝐿 /𝐿 . An estimate of the parameters 
yields 𝑚 = −1 and 0.05 ≤ 𝑞 ≤ 2.3 ∙ 10  in the first, and 𝑚 =
1 and 0.08 ≤ 𝑞 ≤ 0.25 in the second one. Remarkably, modes 
in case 1) and 2) have the same coupling length due to the 
peculiar diagonal form of their coupling matrix. Finally, all the 
modes in the same group have equal 𝐿  except for the 𝐿𝑃  
ones when the fiber slightly elliptical. In this case (4), the x-
polarized modes behave differently from the y-polarized ones. 
These results provide a deeper understanding of the coupling 
mechanisms and are useful to design the transmission system. 

 
 Fig. 1 Coupling length 𝐿  normalized over 𝐿  as a function of 𝐿 /𝐿 . 

Acknowledgements 

This research was partly performed within the Project of national 
interest (PRIN) “Fiber Infrastructure for Research on Space-Division 
Multiplexed Transmission” funded by the Italian Ministry of 
Education, Universities and Research (MIUR).  

References 
1. Winzer, P. Photon. J. 4, (2), 647-651 (2012). 
2. Palmieri, L., Galtarossa, A. J. Light. Technol. 34, (2), 303-313 

(2016). 
3. Øksendal, B. Stochastic differential equations, Springer (2003). 


